Estimate of the tropospherical water vapor through microwave attenuation measurements in atmosphere

نویسندگان

  • Fabrizio Cuccoli
  • Luca Facheris
چکیده

The objective of this paper is to proceed, by investigating the statistics of simulated measurements based on a large dataset of radiosonde profiles, to assess the feasibility of active systems providing water vapor profile information based on Earth-satellite multifrequency differential attenuation measurements made in the 18–22-GHz range. Recently, in fact, we pointed out the potential and the advantages of such measurements, showing in particular how a spectral sensitivity parameter could be exploited to provide the total water vapor content and further information about the shape of its vertical profile. In this work, we present an in-depth statistical analysis of the relationship between the spectral sensitivity parameter and the water vapor content at different tropospheric layers. Furthermore, we discuss the performance of a simple amplitude modulation transmit–receive system that could be adopted to provide the sensitivity measurements. It is shown that a dual-frequency system can directly provide with good accuracy the columnar water vapor content separately from the content of the 3–9 km atmospheric layer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microwave Spectroscopy in Oxford: The Early Years Remarks on the Occasion of Receiving the 1983 ISMAR Award

The first measurements of spectra at microwave frequencies using modern techniques were made before the end of World War II. The reason for this was that the frequency of 2k GHz (a wavelength of 12.5 mm; known as "K-band") had been picked by the Radiation Laboratory at M.I.T. for a precision radar system. Unfortunately, it turned out that this coincided with the region at which attenuation in t...

متن کامل

Atmospheric Water Vapor Measurements: Comparison of Microwave Radiometry and Lidar

The NASAJGSFC Crustal Dynamics Project microwave water vapor radiometer 003) is evaluated in terms of measurements of the integrated precipitable water vapor content of a particular column of the troposphere. The measurements were taken during the Atmospheric Moisture Intercomparison Study (ATMIS) held at Wallops Island, Virginia, during April 1989. Various water vapor sensing instruments were ...

متن کامل

Simultaneous Ground-Based Remote Sensing of Water Vapor by Differential Absorption and Raman Lidars

Water vapor is well known to be a critical component in many aspects of atmospheric research, such as radiative transfer and cloud and aerosol processes. The distribution of water vapor in the atmosphere is highly variable, both in time and in space, and has proven to be very difficult to measure accurately. The U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program’s overa...

متن کامل

Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels

[1] At present, two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board the NASA Terra and Aqua Spacecraft platforms are operational for global remote sensing of the land, ocean, and atmosphere. In this paper, we describe an algorithm for water vapor derivations using several MODIS near-IR channels. The derivations are made over areas that have reflective surfaces in the ...

متن کامل

Analysis of temporal and spatial correlation between precipitable water vapor retrievals from AIRS satellite sensor and 29 synoptic station measurements in Iran

Precipitable Water Vapor (PWV) is one of the most important quantities in meteorology and climate studies. PWV in Earth's atmosphere can be measured by Sun-photometer, the Atmospheric Infrared Sounder (AIRS), and radiosonde from surface, atmosphere and space-based systems, respectively. In this paper, we use PWV measured by Sun-photometer located in Institute for Advanced Studies in Basic Scien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2002